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In present work it is studied the formation of optical vortices in
waveguides with spatial dependence of the nonlinear refractive
index. The propagation of such type of laser pulses is governed by a
system of amplitude equations for 𝑥 and 𝑦 components of the
electrical field in which it is taken into account the effects of second
order dispersion and self-phase modulation. The corresponding
system of equations is solved analytically.

New class exact solutions, describing the generation of vortices
structures in optical fibers with spatial dependence of the nonlinear
refractive index and anomalous dispersion, are found. These vortices
admit only amplitude type singularities. Their stability is a result of
the balance between diffraction and nonlinearity, as well as
nonlinearity and angular distribution. This kind of singularities can
be observed as a depolarization of the vector field in the laser spot.
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1ABSTRACT



Optical vortex is referred to a beam or pulse that has singularity in the amplitude or
phase. The last one is characterized by helical phase front. These light structures are
solutions of two-dimensional paraxial scalar equation of Leontovich. They are
usually created outside the laser cavity by using optical holograms and different
optical masks.

The behavior of optical vortices in different waveguides is described by the
nonlinear amplitude equation (3D+1 nonlinear Schrodinger equation) in which it is
included a term, corresponding to the spatial dependence of the nonlinear refractive
index (x2+y2). Amplitude modulations in such optical structures are observed in the
case of studying the vector structure of the electric field and they are investigated in
the frames of a system of two scalar nonlinear amplitude equations for the x and y
components of the vector electric field.

A solution of the 3D+1 nonlinear Schrodinger equation for optical fibers with spatial
dependence of the nonlinear refractive index was found for the first time by the
authors in [1,2] and it was observed a formation of optical solitons.

Vortex structures as mode conversions have been observed recently in active
resonators [3,4,5]. Optical vortices have a number of applications in the field of high
resolution microscopy, optical tweezers, quantum information transfer, optical
vortex trapping and many others.

2INTRODUCTION



BASIC THEORY

where is the vector amplitude function of the pulse envelope, t is time, α, β and γ are
constants, characterizing respectively the number of oscillations under the pulse’s
envelope, dispersion and nonlinearity of the fiber, Δ┴ is the transverse operator of
Laplace. They are of the kind:

where k0 is the wavenumber, z0 is the initial longitudinal length, u, k̋, n2 are the group
velocity, the second order of the linear dispersion and the nonlinear refractive index of
the medium and A0 is the magnitude of the initial amplitude.
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The equation describing the propagation of optical vortices in waveguides with spatial

dependence of the nonlinear refractive index is in the form [1,2]:
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We have in mind that . It is accepted that the axis Oz coincides with the

geometrical axis of the fiber. Thus, we will work in cylindrical coordinates:
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After couple of transformations, the equations describing the evolution of the

components Ax and Ay of the vector , written in polar coordinates, can be presented as

follow:
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In order to find a solutions of the equations above we make the following

substitutions in the system of equations (4):
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where a and b are constants, Px and Py are new unknown real functions. After couple

of transformations we obtain:
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The left sides of the equations above are the same constant expressions. Their right

sides are functions of the variables r and θ. In order to fulfill the equalities, we

assume that:
.0||2 2   ba (7)
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From this equality we find a connection between the constants a and b:
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Having in mind the expression (7), equations (6) take the form: 
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We make another substitution:
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(11)
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By using the substitution (10), the system of equations (9) can be presented in the form:

Taking into account the nonlinear terms in equations (11), it is convenient to 

search for solutions of the kind: 
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where B, m, μ, η are constants, about to be defined.



By substituting expressions (12) in the system of differential equations (11) and after
short transformations, we obtain:

To fulfill the equalities in (31), it is needed that the coefficients in front of the
respective trigonometric functions in both equations are zero. Thus, we obtain the
following system of two ordinary differential equations:

By using this system of equations we can define that:
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Thus, the following exact analytical solutions, describing the optical vortices,

propagating in fibers with spatial dependence of the nonlinear refractive index are

found:

Going back trough all the substitutions and assumptions made by now, the solutions

for the components Ax and Ay of the vector Ԧ𝐴amplitude function of the optical vortex,

satisfying the basic equations (1) are of the kind:
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• Graphics of vortex solutions for m=1

Fig 1. Intensity profiles of the components (a) Ax and (b) Ay and (c) the total intensity profile for 

m=1.

In Fig. 1 a) and b) it is presented the intensity profile of the vortex structure in

the x and y components of the vector A. In the total intensity profile |A2|, vortex

structures are not found (Fig. 1(c)).
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Fig. 2 Diagram of the vector amplitude function for 

m=1. Significant rotation of the vector A in the 

center of the vortices is observed.

• Graphics of vortex solutions for m=1

The rotation of the vector A in the 

center of the optical vortex is shown 

in Fig. 2.
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Fig. 3 Intensity profiles of the components (a) Ax , (b) Ay and (c) the total intensity profile for 

m=2.

In Fig. 3 it is presented the intensity profiles of the components x and y of the

vector A.

• Graphics of vortex solutions for m=2
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• Graphics of vortex solutions for m=2

It is clearly seen that the increasing of 

the vortex parameter m leads to a 

significant change in vorticity and 

depolarization in the vector diagram 

(Fig. 4) for the case of m=2.

Fig.4 Diagram of the vortex amplitude 

function for m=2.
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 In the present work vortex solutions for the components

Ax and Ay of the vector amplitude function are found.

 The basic vector nonlinear amplitude equation is

presented as a system of two scalar equations

for x and y components of the amplitude function.

 The graphics of the obtained solutions for different

values of the vortex parameters are presented.

 The value of parameter n determines the number of

spirals observed in the profiles of the intensity

components (Ax and Ay) of the vector amplitude function.

CONCLUSION

A

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